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Abstract

A orbiting tethered satellite can propel itself by reaction against the gravitational
gradient, with expenditure of energy but vith ne use of on-board reaction mass.
Energy can be added to the orbit hy pumping the tether length in the same way
as pumping a swing. Examples of tether propulsion in orbit without use of reaction
mass are discussed, including: (1) using tether extension to reposition a satellite
in orbit without fuel expenditure by extending a mass on the end of 2 tether; (2)
using a tether for eccentricity pumping to add energy to the orbit for boosting and
orbital transfer, and (3) length modulation of a spinning tether to transfer angular

momenturm: between the orbit and tether spin, thus allowing changes in orbital anguiar
momentum.

1. Introduction

A tether is a long, flexible cable which connects one part of a satellite with
another. Although quite simple, many very interesting things can be done in space
using tethers [1-3]. In the equilibrium configuratior, as shown in figure 1, the tether

is oriented radially outward, wiih a tension on the tether due to the gravitational
gradient (or “tidal”) force.

The effective acceleration due to the gravity gradient a distance z from the center
of mass (CM) is, to first order:

Qepp =23 goriz/rd, (1)

where g, is the gravity at the Farth’s surface, r, is the orbital radius and r, is the
radius of the earth.

Most analyses of tether orbits assume that the cente: of mass of a tethered satellite
system remains in the original orbit; i.e., that the angular velocity of the tethered
satellite does not change as the tether is extended or retracted. This is true only to
the first order approximation in tether iength. Briefly, the mass that extends outward
experiences an increase in centrifugal force that increases linearly with distance, but
the mass that extends inward experiences gravity that inureases faster than linear'y.
Thus, as the tether is unreeled. the center of mass of the orbit is pulled inward. To
conserve angular momentum, the angular velocity of the orbit increases.

* Current address: Sverdrup Technology, NASA Lewis Research Center 945, 21000 Brookpark
Rd., Clevelend, OH 44135.
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The effect that a tethered satellite can extend across the gravity gradient can be
used for propulsion. The following analysis (sections 2 and 3) follows my calculations

from reference 4

A. Similar results (o section 3 are also derived in reference 5.
2. Orbital Repositioning of a Satellite

In the following section we assume a tether of n

egligible mass in circular orbit.
The extension of the analysis to tethers of non-negli

gible mass is straightforward.

Consider a satellite of mass m; consisting of two pieces of mass m;=m,=m, /2
connected by a tether. The initial orbit is assumed to be circular, with an angular
velocity w, and an initial orbital radius (measured from the Earth’s center) r,. With
the tether at initial length zero, the orbit has initial angular momentum

L; = m;wor:‘:. (2)

Now assume that the tether is extended to length = in each direction from the
CM, as shown in figure 1. The total length is 2z. Note that energy decreases, since

in deploying a tether work is done by the eflective tidal force. Angular momentum is
still conserved,

L= mwr} + mowr?, (3)

where r,, is the orbital radius of the CM, and r,=r,,, - z and Io=fem + 2. The
inward tension on the low end of the tether must equal the outward tension on the
high end of the tether If we expand to second order in z, then set equation (2) equal

to equation () to s e for w and r, as a function of tether extension z, we find the
center of mass dror .,

2
Temn =To— 5 _1'_ (4)
ro

and the orbital period P increases as the tether extends:

P=Pli-9(Z)] (5)

For example, a GEO satellite consisting of two equal masses on a 1000 kin long
tethier will have a period faster than that of an untethered satellite by 0.44° per day.

Inclusion of higher order terms results in an increase in the effect.

If the two masses are allowed to differ, the orbital period change is proportional
to mymy,/(m; -+ m,), which is maximum when the two masses are equal
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3. Orbital Propulsion by Eccentricity Pumping

The prececding analysis has assumed equilibrium conditions, i, 2., that the orbit
remains circular during the extension and deployment of the tether. This assumption
1s true only if the tether is deployed or retracted over a time greater than an orbita)
pericd. Faster deployment wiil result in dynamic changes to the orbital eccentricity.
This is shown in figure 2, where an initially circular orbit is altered to an eccentric
orbit by modulation of the tether length. Continuing the length modulation allows
eccentricity to be continuously increased (or decreased). This effect can be used as a
means for orbital propulsion that does not require expenditure of reaction mass. In
the process energy is added to the orbit {from a power source on board the spacecraft),
while the orbital angular momentim is constant. Particular applications are injection
of a spacecraft into an escape orbit from an initially circujar orbit, and use of the
process for transfer orbits, e.g., LEO to GEO.

The method is straightforward. A mass is deployed away from the spacecraft on
the end of a tether. The stable configuration is with the tether oriented radially from
the central body. The tether is mounted on a reel with a motor which can pull it in
or let it out. The method of orbit pumping consists of pulling the tether in at perigee
(more generally, periapsis) and letting the tether ont at apogee. Since gravitational
gradient (tidal) forces are to first order proportional to the inverse radial distance
cubed, more mezhanical work is done against the tidal force in pulling the tether
in than is returned when the tether is lot back out. Thus, energy is added to the
orbit. Since the orbital angular momentum is unchanged, the eccentricity ¢ of the
orbit increases. This is shown in schemat 'c in figure 3.

As an aside, it may be noted that this process is essentially the same as the
process of adding energy to a playground swing by “pumping” [6].

Contrary to expectations, the eccentricity pumping process is most effectjve when
the orbit is nearly circular. Although thke amount of energy available per orbit
decreases as the orbit becomes nearly circular, the sensitivity of the eccentricity ¢ to
small changes in energy increases as 1/¢, and this factor dorniraies over the decrease
in energy. For a perfec'ly circular orbit, higher order ierms contribute as well.

The reverse process, circularizing an eccentric orbit by reroval of cnergy by a
viscoelastic tether, has been discussed in detail by Columbo et al. [7]. This is
equivalent to tidal damping, a natural phenomenon that accounts for the fact that
most of the moons in the solar system have nearly circular orbits.

Eccentricity pumping can only be done if the initial orbit is high enough that the
minimum perigee does not impact the primary. For pumping from an initial circular
orbit at distance a to escape this implies that a, > 2 r.. In general, the mintmum
perigee must also be high enough not to intersect the atmosphere. This corresponds
to an initial orbital radius of ~13,150 km, or a minimum initial orbital altitude of
6,275 kn.
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Again, assume that the tether itself is of negligible mass. The case of a massive
tether can be straightforwardly calculated by integration over the mass distribution.
We also assitine tlat the masses ou each end of the tether are equal, the case which
for fixed tether length maximizes the effect. Extrapolation to unequal masses is
straightforward. Assume equal masses m/2 extended on the ends of a tether of full
iength d (.e., half-length ). The mechanical energy stored in the tether is:

L3 r2 .
E = 3 mgogdi’ (6)

Now assume the orbit is elliptical, with eccentricity . The orbital energy is

r2(1 —¢?
E=-mng, —’(—Ea )
o

(7)

The amount of energy required to retract the tether at perigee minus the amount
recovered in extending the tether at perigee is:

AE 3 r?
—_—_— = - d* =< 2 8
orbit 8 o ad «(6+¢) (8)

In the real case, the tether length d will not reeled in all the way to zzro length.

An effective value of d can be used, 4,7, = d,2,, —d 2%,

The sensitivity of eccentricity to changes in energy is

de  a, ()

dE ~ mg,ric

The orbital period, exp.essed in terms of the crbital period of the initial circular
orbit, is

r=1,(1-e)3 (10)
The average power required is:
> 2
%%n::—;mg,, a%_—- d? (6 + )1 — ¢%) (11

The [unction of ¢ has a maximum of 2.45 at «=0.6. In practical units, this is an
average specific power of
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P = (B0w/kg) a; %2 L? €(2.45 + 0.416%)(] - &%) (12}

where a, is the initial semimajor axis in muliiples of the earth radius r, and L
is the tether length in thousands of kilometers. Note that the function of ¢ has been
normalized to a maximum value of 1. Since for most applications 4 will he << 1600
km and a, will be >~1.5 r,, this specific power is well within achievable levels. The
peak power levels required will be higher, and depend on how fasti the tethec is reeled
.

“Jen the rate of change of eccentricity is

de diedE 3 d° ) 2
= = 2D (g 1-e2)3 (13
G IEE T Ena 8- (13)

Te find the time required to reach a given eccentricity, this expression is inverted
and integrated. The integral can be done exactly,

‘(c) - §‘r 9.": ..._1_._ tan_l[—l | + _f (14)
TR T U mno ey i

Figure 4 shows the time to reach a given eccentricity. (Here time is plotted in
ue units of af/z?r,, which is simply the initial orbital period scaled by the squarad
tether length. Initial orbital periud is 90 minutes for LEO). Escape is approached
asymptotically.

It is also of interest to look at the time required to reach a given apogee altitude:
this is shown in figure 5. Again time is in units of the scaled orbital period, and
altitude is given as a multiple of the initial orbital radius {incasured from the center
of the Earth). At long tiines the altitude increases almost linearly with time.

As ai example, consider the case where eccentricity pumping is used to move
from LEC to gessynchranous transfer orbit. agpo=6.63 r,, so QG po-cro = 382 1,.
and ¢z po_gro = 0.738. The minimum perigee requirement leads to a minimum initial
orbitai radius of a, = 1.74 r,, 1.e., initial orbital altitude 4700 km and initial or'ital
period 7, ~ 200 min. From figure 6, the time needed 1s 0.43 ()2

tor a 5UG xm tether length, (%) ~500, and the orbital pumping process takes
725 hourz, or about 21 days.

A efficient technique for the apogee kick would be to continue cccentricity
pumping until the apogee is well past GEO, perform the apogee kick, then use
eccentricity pumping in reverse to circularize the orbit. The amouut of velocity change
AV required to give the orbit sufficient angular momentura to attain circular orbit at
GEO is inversely proportional to the distance. Thus, in theoiy, the AY needed for
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apogee kick could be made arbitrarily low by pumping tiie apogee to a high enough
‘nitial value, although this would take a long time.

The decrease in eccentricity rate with increasing sccentricity is due to several
factors. one of them being that the en~ ¥ transfer per orbit is proportional to the
square of the tether length over the orbital semimajor axis. As the eccentricity, !
and thus the semimajor axis, increases, the rate decreases. Since the tether is
retracted at perigee, the effect can be eliminated by increasing the tether length as
the apogee distance increases. (As tether length increases, this will require initiating
the retracticn slightly before perigee.) Note that since the total stress due to tidal

force goes as d?/r®, the maximum stress at apogee decreases despite the increased
tether length.

The requirement for a minimum initial altitude comes from the necessivy that the
nunimum perigee of the orbit not intercept ihe atmosphere. This requirement can
oe alleviated if the pumping maneuver is corabined with an incresnental AV at each
apogee to increase the angular momentum just sufficiertiv to keep the perigee from
decreasing.

4. Propilsion Using a Spinning Tether

The calculations in the preceeding section have all been done assuming that ihe
tether is not spinning. This is not required by physics, but is a practical consideration
due to the iimits of real rnaterial strength. ror a spinning tether, centrifigal stresses
<an very rapidly become extremely large. The constraint to avoid spinning the tether
Juring retraction will put a limit on the maximum modulation d.y;/d possible.

If the tether is allowed to spin, however, a vast'v more effective propalsion meihod
which is not limited by orbital angular inomeniu:. is possible. T'his is shown in
schematic in figure 6. For example, to increase the orbital altitude, the tether is
extended wkile horizontal. and retracted when vertical. Since in retraction work js
done against the gravitational gradient, the orbital energy increases. The orbital
angular momentum also increases, and the spin of the tether increases (if the spin is
opposite to he orbital direction) or decreases (if the spin is the same as the orbit).
Effectively, angular momentum is tiansferred from the orbii to the tether.

The aricunt of energy transferred per sp'n is nearly independeat of the spin rate,
and thus the higher the spin rate of the tether, the faster (in principle) the orbital
energy can be: changed. The rate cf orbital chai.ge is limitad only by the power source
and the materials strength. If the energy source had sufficiently high power, it would
even be possible to propel past escape velocity.

Orbita! piane changes are also possible (although slightly more difficult to
illustrate). For plane changes the tether spin axis is optimally in the plane of the
orbit, and again the tether length is modulated in phase with the orbit.



extend tether at

horizontal position

(null gravity

gradient) retract tether at
vertical position
(against gravity
gradieni)

Figure 6. Orbital propulsion using a spinning tether (orbita! motion
here is clockwise; tether spin counterclockwise).
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Figure 7. ¥orces on a tilted tether (shown in locally inertial reference

frame). Since Fa> F1 and (2> @, ikere is a net side force on the center
of mass of the tetlier as well as a torque.




An alternative view of this propulsion system, showing the origin of the forces,
is shown in figure 7. When the tether is not aligned vertically, there is a net side
force on the tether due to the fact that the gravity on the two end masses is not
the same. In general for a spinning tether this side force averages to zero. However,
by (for example) increasing the tether length when the tether is angled to the left
of vertical, and decreasing the tether length when it is to the right of vertical (i.e.,
modulating the lengtk) the average can be made norn-zero. This side force is then
used for propulsion.

For real materials the arnount of angular momentum which can be stored in
the tether is limited. An untapered material can rotate at a maximum tip speed
which is characteristic of the material, v, = \/[(breaking stress)/density]. This value
vy is shghtly under 2 km/sec for the best currently existing fiber. Defect-free fibe:s
of high-strength materials—silicon carbide, diamond-have theoretically much better
values, and ten times this vaiue, 20 km/sec, is - ot unreasonable to expect in the
long term. For cunstant tip speed, angular momentum increases linearly with tether
length, and so the effectiveness increases with tether length.

As an example, suppose a spinning tether is used for propulsion from LEC :o
escape. Angular momentum at LEO is (6500 km)(7.9 km/sec) or about 50,000
km?/sec. Angular momentum at escape is km?/sec. The difference, about 20,000
km?/sec, must be taken up in tether spin. At a maximum V, of 2 km/sec, the tether
length required will be 10,000 km. If 20 km/sec V, could be achieved, the required
! tether length is only 1000 km, a tether length which is not unreasonable to expect to
be achievable in the long term.

Alternatively, if angular momentum can be transfered to some external sink, this
ma2y not be a limitation. The obvious choice is to transfer momentum to the Earth’s
magnetic field via a magnetic torquer, such as is used in many satellites for orientation
control. This could be done by 2 method as simple as driving an alternating current
along the length of the tether and using the v x B potential to drive energy through
a load (appropriately this load would be the tether winch motor, allowing the energy
put into tether spin to be recovered). This then becomes conceptually similar to
electrodynamic tether propulsion (see, for example, discussions in references 1-3)),
except that tether spin veiocity is substituted for orbital velocity, and since required
the current is AC, no return path aiong the space plasma is required.

5. Conclusions

A tethered satellite cystem can extend significant distances across the
! gravitational gradient of the body it is orbiting. This effect can be made use of,
' using the gravity gradient itself for propulsion. Several applications are discussed.
Thesc applications are noteworthy as examples of raising an orbit “by its bootstraps”
by pulling agaiust the gravity gradient.

Of course, these propulsion systeuic are not reactionless in the phyvsics sense:
Newton's law of conservation of momentum is nct violated, since momentnm is
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transferred to the Earth (or primary) by the gravitational attraction. However, they
are resctionless in a real, engineering sense, in that no propellant is expended as
reaction mass. If a limitless energy source is available, such as a solar power system,
the tether system can maneuver completely in Earth orbit.
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